Lab 5: Week 1 - LED Temperature Alert System

. and understanding our code

Purpose

The purpose of this laboratory exercise is to further our understanding of controlling sensors with a computer and
using the computer for data acquisition, processing, and control of physical systems.

In this lab you will use thermocouple to measure and record temperature under the control of a Raspberry Pi
computer interfaced through the General Purpose Input and Output (GPIO) pins. You will construct the circuit
on a breadboard and write a Python script to control the sensor and record data locally. Then, you will connect
to the JMU WiFi and construct additional Python code to write data to the cloud where it can be accessed by
any device at any time. This will require several cyber security authentication protocols. Finally, you will use the
thermocouple sensing system to activate an LED if a critical temperature is reached and send an alert to your cell
phone via SMS text messaging.

Learning Goals

The goals of this Lab (all weeks together) are to:

o Review circuit concepts to physically connect measurement hardware to a computer

o Gain experience with General Purpose Input and Output pins (GPIO)

e Become familiar with Python programming used to control sensors and physical systems
o Investigate and evaluate measurement capabilities of a measurement instrument

e Calibrate the instrument

¢ Control sampling rate

¢ Write data to a local host computer

o Calibrate the instrument (and estimate Type B calibration error)

o Determine an estimate of Type A (random) measurement uncertainty

o Write data to the Cloud

¢ Use real-time automated decision making to control physical systems based on incoming data
e Send alerts wirelessly via WiFi and SMS communication protocols

e Report your findings in a formal lab report

This weeks objectives are in bold.

In this part of the thermocouple lab you will add to your Python script to record data locally. Just as we did in
Labs 3 and 4, you will create a .csv file to record you data. You will then be able to calibrate your thermocouple
setup with boiling water and ice water. Finally, you will use the thermocouple sensing system to activate an LED
if a critical temperature is reached (either too hot or too cold).

Background

Thermocouples are an essential part of many industrial processes and temperature control systems. They need
to be calibrated regularly to ensure proper operation. In this second part of the lab, you will add code to your
Python script to record data locally on the RPi. This will be used to facilitate calibrating the thermocouple using
a two-point calibration of boiling water (100°C) and ice water (0°C). Additional lines of code will be needed if the
thermocouple is not outputting the correct temperature. Finally, you will add lines of code to your Python script
to send a warning message and activate an LED indicator if the temperature becomes too high or too low — thus
simulating physical control systems used in industrial processes and thermal regulation.

Methods

@ Tip: File and Code Hygiene
It it is good practice to

e create a dedicated folder for your work, where you save all files that belong to a given project. This
means e.g. a folder for ISAT300 that contains a subfolder for each lab.

o save all files to disk with sensible names

o use typical file extensions, such as <filename>.py for Python files.

This lab assumes that you have a working Python program from Lab 3 to conduct thermocouple measurements.
If you no longer have that program, download the Lab 3 starter code.

Add one more line of code convert the temperature from Celsius to Fahrenheit and print this value on the screen.

print(str(temperature * 9 / 5 + 32), "F")

Methods: Writing Data to a .CSV file

Comma-separated Variables (or .csv) files can be opened by numerous software packages to perform data analysis.
Last time we used f.write to add data to our file. This time, we will write two variables (Celsius and Fahrenheit)
to the file using a formatted python string.

In order to create a calibration curve and assess measurement uncertainty (Type A: random and Type B: systematic)
for the thermocouple you will need to collect data.

1 Note

This week, we are doing it in a slightly different way to Lab 3. Compare the two.
What are the differences?

We are using with open(...) instead of opening a file £ with £ = open(...) to access our data file. They do
the same thing, but are slightly different. The command with open(...) will automatically close the file when it
is not needed; £ = open(...) requires an additional statement f.close() to close the file object £.

1. Replace the code for writing temperature to file with the following Python code to create a .cswv file.
2. Then write the thermocouple temperature measurements to it.

3. Embed the code in the for-loop so that the data is simultaneously presented on-screen and written to the .csv
file.

../Lab3/index.qmd
https://www.w3schools.com/python/ref_file_close.asp

@ Tip

e Find out which line of your code represents the actual temperature measurement.

e Think about the placement of that line inside the code, when you want to run multiple measure-
ments.

e Assign your measurement to a variable before doing the temperature conversion.

You will need to add these lines to your Python

n " "

with open("thermometer.csv","a") as logfile:
logfile.write("\n" + "Celsius, Fahrenheit") Creates a header for each column

3% ‘_'_"‘-——- Every time you run the program
48 for x in range(30):
41 with open("thermometer.csv","a") as logfile:
42 logfile.write(" \n{ﬁ},y} ".format(str(temperature C), str(temperature F)))
8 ——¥ A 4 «
\n creates a new line Sets 2 variables Fills in the variables {0} Fills in the variables {1}
To be written With this string With this string
{0} and {1} separated

with a comma

You can add more
If you needed...

Figure 1: Code to write your data to a file

1 Important

Test the system after you have added these lines of code be sure you are creating a data file with 30
samples!

4. Once your code is working, use your program to generate the data that allows you to create a two-point
calibration curve using 0°C and 100°C reference temperatures.

5. Use the collected data to:

e calculate mean + standard deviation for each reference temperature
¢ determine slope and offset of your temperature calibration curve.

6. Add lines of code to your script to correct the temperature output based on the slope and offset of the
two-point calibration curve.

Methods: Hardware connection — Physical connection for the LED

7. Connect the LED to the RPi as shown in the diagram below. Use different locations on the breadboard to
accommodate the thermocouple sensor, as needed. GPIO pinout is provided below for reference.

1 Important

Shut down the RPi before making the connection and ask an instructor to get the wiring checked before
turning it back on!

---------- R wEmEE SEEAEE WEAEET EREET SEEEE @EEEw &
FxmaE wEmES Sesww TemwEE BEEEE wEoEwE T E R R - ww -
I R R I R I O B

e
R R B B B RS R B R R R R B E RN B R R R R R R R E R R EE R e EEEE R R
----------- @R R R R R R R RN R E R R E R R W R R R R R R R W R W

This wire must connect to a 3.3V power pin
-------------- B Use only GPIO pins on the 3.3V side

3V GPIO
3.3V GPIO

Figure 2: Wiring diagram to connect the LED to the RPi for automated control

@ . GPIO 24

GPIO 2 Serial Data (12€) . @
GPIO 10 MOS! (SPI 0) . . Ground
GPIO 09 MISO (SPI 0) . . GPIO 25

6p103 serial clock (12¢)| () @ [coune

GPIO 4 . . GPIO 14 (UART TX)
Ground . . GPIO 15 (UART RX)
GPIO 17 Chip Enable-CE1 (SPI1 . . GPIO 18 Chip Enable-CEO (SP1) [PWM]
GPIO 27 . . Ground
Ground . . GPIO 7 Chip Enable-CE1(SPI0)
GPIO 0 EEPROM Serial DATA {12€) . . GPIO 1 EEPROM Serial Clock (12C)
GPIO 6 . . GPIO 12 (PWM)
GPIO 13 (PWM) . . Ground
PWM] GPIO 19 MISO (SPI 1) . . GPIO 16 Chip Enable-CE2 (SPI 1)
GPIO 26 . . GPIO 20 MISO (SPI 1)
Ground . . GPIO 21 SCLK (SP1 1)
>

GPIO 22 . . GPIO 23
GPIOS . . Ground

GPIO 11 SCLK |SP|o)|. . GPIO 8 Chip Enable-CEO (SPI0)

s R Mmoo oW =N

3 é ('.: [5710] 55 | Respberry Pi 4 Model B

FABL s kamnu Bl AALE

Figure 3: GPIO Overview

Methods: Software connection to write data to .csv file and activate the LED

8. You will need to add a few new lines of code to the Python script you are using to interface with the
thermocouple to write data to a .csv file and to activate the LED when a critical temperature is reached. Do
this after you have finished your measurements for the calibration.

9. Open the thermocouple Python code in Thonny and add the following lines of code in the appropriate
locations within the program. Control the LED so that the light is normally OFF, but turns ON (and stays
on) below 15°C or above 80°C. Make sure the LED turns OFF if temp is between 15-80°C.

10. Add the lines of code on the right to enable the GPIO and setup the LED connection

You will determine the correct locations within the Python program to put them

import RPi.GPIO as GPIO
GPIO.setmode (GPIO.BCM)
GPIO_LED = (17)
GPIO.setup(GPIO_LED, GPIO.OUT)

11. Add the below lines of code to set the temperatures which activate the LED. Embed them in the loop so they
are applied to every measurement

if temperature C > 25.088
print ("Warning!")
GPIO0.output(GPIO LED, GPIOD.HIGH)
elif temperature C <15.00
print ("Warning!")
else:
GPIO.output(GPIO LED, GPIO.LOW)

Figure 4: Code to operate the LED

Since we have two conditions to check (too hot or too cold) we will use the elif statement. This stands for else if.
If the first criteria is not met (> 25.00), it will check the next criteria (<15.00). You can add as many of these as
you like. The else statement at the end provides the default setting if none of the other criteria are met.

12. Final Step: Add a second, different color LED to the circuit. Modify the Python code to turn one LED on
if the temperature is too hot, and turn the other LED on if it is too cold. Neither LED should be on at room
temperature.

Acknowledgements

This Lab was prepared by Dr. Chris Bachmann. Special thanks to Joe Rudmin for obtaining necessary supplies
and facilitating the lab setup.

Revision Description Author

2025-02-28 Updated to account for thermocouple lab 3 Tobias Gerken
2024-03-01 Updates for clarity and error fixes Tobias Gerken
2024-02-23 (S24) Updated to Web, changes to sample code and images Tobias Gerken

Initial Version Chris Bachmann

	Purpose
	Learning Goals
	Background
	Methods
	Methods: Writing Data to a .CSV file
	Methods: Hardware connection – Physical connection for the LED
	Methods: Software connection to write data to .csv file and activate the LED

	Acknowledgements

